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Towards brain-tissue-like
biomaterials
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Many biomaterials have been developed which aim to match the elastic modulus
of the brain for improved interfacing. However, other properties such as ultimate
toughness, tensile strength, poroviscoelastic responses, energy dissipation,
conductivity, and mass diffusivity also need to be considered.

Need for brain-tissue-like biomaterials

Creating biomaterials resembling brain tissue is required for many emerging technologies.
Neural probes in brain-machine interfaces!-2, microphysiological models of neurological dis-
eases, scaffolds for neural tissue engineering®°, brain organoids®, and brain proxies’ (e.g., for
studying traumatic brain injury while reducing the need for animal testing) need to mimic the
physical properties of brain tissue to be successfully applied®. For in vivo applications, a
mechanical match between implants and the surrounding brain tissue can minimize immune
response and implant rejection due to the foreign-body response®!0. Recapitulation of the native
environment of neurons and glial cells in vitro is crucial for their appropriate differentiation,
motility, function, and proliferation either to expand cells for therapeutic applications or to study
cellular responses to chemical signals and new treatments in vitro! 112,

Physical properties of the brain
The brain is a complex tissue that is anisotropic and remarkably soft; indeed, it is one of the
softest organs in the body. And when things are soft, they get hard to engineer. Materials
scientists have found it challenging to fabricate functional biomaterials resembling the low
stiffness of brain tissue. One important question that remains: why is brain tissue so soft?
The brain’s unique architecture causes it to respond mechanically as a poroviscoelastic
material, whereby the cerebrospinal fluid can be excreted from the brain’s matrix under com-
pression!3. This response contributes to the apparent bulk softness of the brain, regardless of the
stiffness of the elements arranged throughout the tissue!4-1°. In microscopic measurements,
brain is also exceptionally soft; brain parenchyma contains very little fibrous collagen I, which
correlates strongly with the stiffness of different organs!”. Furthermore, it contains large
amounts of different proteogylcans!®1°, heavily glycosylated proteins that bind water. This
makes the water content in brain relatively high, between 73 and 85% of the total mass.

1Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA. 2 Space Biosciences Division, Ames Research Center,
NASA, Mountain View, CA 94035, USA. 3 NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/
EHU, Vitoria-Gasteiz, Spain. 4 Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-

Gasteiz, Spain. > University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundacién Eduardo Anitua), Vitoria, Spain.

© Discovery Tower, Singapore Eye Research Institute, The Academia, Singapore, Singapore. / Department of Physiology, Development and Neuroscience,
University of Cambridge, Cambridge CB2 3DY, UK. & Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

Memail: eappel@stanford.edu

| (2020)11:3423 | https://doi.org/10.1038/s41467-020-17245-x | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17245-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17245-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17245-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17245-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17245-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17245-x&domain=pdf
http://orcid.org/0000-0002-9114-5306
http://orcid.org/0000-0002-9114-5306
http://orcid.org/0000-0002-9114-5306
http://orcid.org/0000-0002-9114-5306
http://orcid.org/0000-0002-9114-5306
http://orcid.org/0000-0002-0773-300X
http://orcid.org/0000-0002-0773-300X
http://orcid.org/0000-0002-0773-300X
http://orcid.org/0000-0002-0773-300X
http://orcid.org/0000-0002-0773-300X
http://orcid.org/0000-0002-8425-7297
http://orcid.org/0000-0002-8425-7297
http://orcid.org/0000-0002-8425-7297
http://orcid.org/0000-0002-8425-7297
http://orcid.org/0000-0002-8425-7297
http://orcid.org/0000-0002-2301-7126
http://orcid.org/0000-0002-2301-7126
http://orcid.org/0000-0002-2301-7126
http://orcid.org/0000-0002-2301-7126
http://orcid.org/0000-0002-2301-7126
mailto:eappel@stanford.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

COMMENT

On the other hand, myelin acts as an insulator material, which
is composed mainly of lipids. In fact, lipids account for roughly
60% of the total dry weight of the brain. As the myelin content of
neural tissue scales with the tissue’s stiffness?0, differential mye-
lination contributes to the mechanical heterogeneity of brain and
spinal cord tissue.

Limitations of current research

Characterizing the stiffness of the brain with traditional tools is
often unreliable, because of the low bending stiffness of brain
tissue. Recently, different experimental techniques such as
atomic force microscopy?!, microindentation??23, rheology?4,
and magnetic resonance elastography?® have been used in vivo
and ex vivo, under dry and wet conditions, and with different
boundary and loading conditions. Using these various techniques
the elastic modulus of brain tissue is typically shown to be in the
range of few hundreds of Pa to kPa, yet the experimental
methods, animal models, and conditions used to conduct these
tests diverge substantially from lab to lab, inducing a high degree
of variability in measurement outcomes. Consequently, com-
parison between various studies can be highly unreliable. More-
over, the mechanical properties of the different parts of the brain
have not been thoroughly characterized to date. It is still unclear,
for example, whether gray matter or white matter is stiffer as
different studies show contradictory results. In-depth studies
characterizing the stiffness of brain tissue at all scales, from
bulk to the nanoscale (scale at which neurons and glial cells
sense)?0-28, and under physiological conditions are therefore
essential for the field to move forward. Further, it is crucial that
the field coalesce around standardized methods for character-
ization at these various scales to ensure reliable comparisons can
be made between studies. We encourage different laboratories to
join forces to generate standardized experimental methodologies
and perhaps perform round robin testing to produce reliable
interlaboratory comparisons.

Mechanical mismatch

When researchers discuss the mechanical mismatch between
engineered biomaterials and brain tissue, they often compare
stiffness alone. E pluribus unum, reducing the complexity of the
brain to this one mechanical parameter, while simple, is never-
theless taking a very limited view. The field must move towards
determining other mechanical properties crucial for the suc-
cessful use of biomaterials in these applications. Apart from
stiffness, the tensile strength, ultimate toughness, viscoelasticity,
relaxation time-scales, adhesion, and structural parameters con-
tributing to the diffusion of solutes are essential properties that
must be characterized in greater depth (Fig. 1). It is known that
mechanical mismatches can cause primary injuries that start at
the cellular scale, but the degree to which a mechanical mismatch
can cause mechano-chemical injuries through the activation of
apoptotic and/or necrotic cellular pathways remains to be
understood. Materials developed in the future will need to offer
extremely high neuroprotection, as it has been shown that inju-
ries can initiate at small local deformations (shear strains of just
14% in impacts at critical and supercritical strain rates)2°.

Only once we deeply understand the properties of brain tissue,
we will be able to develop biomaterials resembling its complex
properties. In this sense, diffusion of solutes through biomaterials
will be critical. For instance, previous studies have correlated the
mechanical properties of hydrogel scaffolds to the differentiation
of stem cells into neurons®’. Yet, the mesh size is often over-
looked, even if it is known to be a main contributor to the dif-
fusion properties of solutes in hydrogels3!. It will undoubtedly be
essential for biomaterials to imitate the transport of oxygen,

nutrients, and therapeutics in real brain tissue. One simple
characterization technique we would advocate for adoption in
assessing diffusivity is fluorescence recovery after photobleaching.

Biodegradation times should be also considered for the design
of brain-tissue-like neural probes or biomaterials for neural tissue
engineering. Unfortunately, degradation studies of implants in
the brain under physiological conditions are very scarce. Fluids in
the brain contain proteins, peptides, sugars, and ions that inter-
act, and degrade, the material inserted. Furthermore, inflamed
brain tissue can produce reactive oxygen species®? that can
contribute to implant degradation. In addition to mechanical
testing, we need to design new methods to resemble biode-
gradation under natural physiological conditions within the brain
(Fig. 1).

A more exhaustive, multi-scale design

So far, there are no materials that resemble the complex
properties of brain tissue. There are some potential candidates
that, combined with other materials, could lead to this goal. For
instance, injectable hydrogels3334 are being studied as treat-
ments for glioblastoma post resection. At the same time, these
injectable materials offer the possibility of delivering drugs in a
sustained release manner3>3°, Even if their viscoelastic prop-
erties have not yet been compared directly to those of the brain,
the injectability of these materials is promising in order to
replace currently stiff and hard materials like Gliadel wafers37,
currently used clinically to fill postsurgery cavities in the brain
tissue. In brain organoid applications, the most widely used
material for scaffolds is Matrigel. The limitations of this
material are well-known33: batch-to-batch fluctuations and its
constituents would make its FDA approval difficult for clinical
applications, and it is a high-cost material. Therefore, there is a
necessity to find new materials to substitute Matrigel. For other
applications, such us brain-machine interfaces, poly(3,4-ethy-
lenedioxythiophene) with polystyrene sulfonate (PEDOT:PSS)
is the most widely used conducting polymer. At the same time,
PEDOT:PSS is stable over months, and reduces the impedance
by increasing the effective area for ionic-electronic transduc-
tion, making this biomaterial a so far unbeatable to improve
recording and stimulation when used as a coating in neural
probes for brain-machine interfaces3®. PEDOT:PSS helps in
decreasing the exposed stiffness to the brain when used as
coating materials for neural probes. However, PEDOT:PSS is
still orders of magnitude stiffer than the cerebral matter. This
stiffness mismatch is accelerating the search for softer func-
tional materials.

Prospective and future directions

In conclusion, several critical shortfalls must be addressed to
enable the creation of useful and reliable brain-tissue-like bio-
materials. The viscoelastic moduli, ultimate toughness, tensile
strength, poroviscoelastic responses, energy dissipation, adhesion
forces, and solute diffusivity of the brain need to be mapped at all
scales, from the bulk to the nanoscale, under physiological con-
ditions. Such studies would enable the development of next-
generation biomaterials resembling a wide-ranging set of physical
properties of the brain. In this regard, it is essential that the brain
biomechanics community strengthen collaborations to perform
round robin tests and design standardized protocols. In addition,
degradation studies of implants need to be designed to mimic the
particular physiological conditions of the brain. We believe that
these challenges are, while certainly difficult to tackle, addressable
with technologies available today through cohesive inter-
disciplinary efforts by materials scientists, mechanical engineers,
biologists, and clinician scientists. Looking forward, we hope to
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Fig. 1 Physical features of brain tissue that need to be resembled at different scales. The extracellular matrix of the brain (perinueonal net and the neural
interstitial matrix) and its protein nanoscale building blocks give brain tissue its physical properties that differ from region to region. Resembling at different
scales mechanical properties such as the tensile strength, ultimate toughness, viscoelasticity, relaxation times, stiffness, cell adhesion, and well as other
physical features such diffusion of nutrients and oxygen and conductivity are key for the rational design of brain tissue mimicking hydrogels. Biomaterials
comprehensively capturing the diverse properties of brain tissue can propel applications such as neural probes for brain-machine interfaces, brain
organoids for studying neurogenesis or drug screening and injectable materials to substitute current hard materials to treat certain types of brain tumors
such as glioblastoma multiforme. Brain graphic adapted from the following, under a CC BY 3.0 licence: https://webstockreview.net/image/
clipartbraintransparentbackground/426010.html.

inspire and help researchers to fabricate new biomaterials that
can recapitulate the mechanical, physical, and diffusion proper-
ties of the brain.
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