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Graphical Abstract

SHORTABSTRACT:Understanding howalgorithm features impact glucose con-
trol after unannounced meals is a critical step toward full closed loop insulin
delivery and reduced patient burden. For unannounced meals in a full closed
loop system, and with faster insulin pharmacokinetics inherent to pigs, time-in-
range was greater with open-source algorithm AndroidAPS than Loop in pigs
with diabetes.

Clin. Transl. Med. 2021;11:e387. wileyonlinelibrary.com/journal/ctm2
https://doi.org/10.1002/ctm2.387

https://orcid.org/0000-0001-9301-6789
https://orcid.org/0000-0002-2301-7126
mailto:eappel@stanford.edu
https://wileyonlinelibrary.com/journal/ctm2
https://doi.org/10.1002/ctm2.387


Received: 1 December 2020 Revised: 24 March 2021 Accepted: 30 March 2021 Published online: 8 April 2021

DOI: 10.1002/ctm2.387

RESEARCH ARTICLE

Full closed loop open-source algorithm performance
comparison in pigs with diabetes

Rayhan A. Lal1,2,3 Caitlin L. Maikawa4 Dana Lewis5 SamW. Baker6

Anton A. A. Smith7 Gillie A. Roth4 Emily C. Gale8 Lyndsay M. Stapleton4

Joseph L. Mann7 Anthony C. Yu7 Santiago Correa7 Abigail K. Grosskopf9

Celine S. Liong4 Catherine M. Meis7 Doreen Chan10 Joseph P. Garner6,11

David M. Maahs2,3 Bruce A. Buckingham2,3 Eric A. Appel2,3,4,7

1 Division of Endocrinology, Department of Medicine, Stanford University, Stanford, California, USA
2 Division of Endocrinology, Department of Pediatrics, Stanford University, Stanford, California, USA
3 Stanford Diabetes Research Center, Stanford University, Stanford, California, USA
4 Department of Bioengineering, Stanford University, Stanford, California, USA
5 OpenAPS, Seattle, Washington, USA
6 Department of Comparative Medicine, Stanford University, Stanford, California, USA
7 Department of Materials Science & Engineering, Stanford University, Stanford, California, USA
8 Department of Biochemistry, Stanford University, Stanford, California, USA
9 Department of Chemical Engineering, Stanford University, Stanford, California, USA
10 Department of Chemistry, Stanford University, Stanford, California, USA
11 Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA

Correspondence
EricA.Appel,DivisionofEndocrinol-
ogy,Department of Pediatrics, Stanford
University, Stanford,CA94305,USA.
Email: eappel@stanford.edu

RayhanA.Lal andCaitlinL.Maikawa
contributed equally to thiswork.

Abstract
Understanding how automated insulin delivery (AID) algorithm features impact
glucose control under full closed loop delivery represents a critical step toward
reducing patient burden by eliminating the need for carbohydrate entries at
mealtimes. Here, we use a pig model of diabetes to compare AndroidAPS and
Loop open-source AID systems without meal announcements. Overall time-
in-range (70–180 mg/dl) for AndroidAPS was 58% ± 5%, while time-in-range
for Loop was 35% ± 5%. The effect of the algorithms on time-in-range differed
betweenmeals and overnight. During the overnight monitoring period, pigs had
an average time-in-range of 90% ± 7% when on AndroidAPS compared to 22% ±

8% on Loop. Time-in-hypoglycemia also differed significantly during the lunch
meal, whereby pigs running AndroidAPS spent an average of 1.4% (+0.4/−0.8)%
in hypoglycemia compared to 10% (+3/−6)% for those using Loop. As algorithm
design for closed loop systems continues to develop, the strategies employed in
the OpenAPS algorithm (known as oref1) as implemented in AndroidAPS for
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unannouncedmeals may result in a better overall control for full closed loop sys-
tems.

KEYWORDS
automated insulin delivery, diabetes, open-source closed loop

1 INTRODUCTION

Type 1 diabetesmanagement is highly burdensome, requir-
ing regular monitoring of blood glucose levels and careful
insulin delivery. Accurate insulin dosing is critical tomain-
tain glucose levelswithin the normal glycemic range and to
prevent acutely dangerous hypoglycemic episodes as well
as the long-term consequences of hyperglycemia.1–3 The
result is that individualswith type 1 diabetesmust carefully
deliver insulin in relationship to their meals and exercise
to manage their blood glucose.
The recent advent of accurate continuous glucose mon-

itors (CGM) has allowed the development of automated
insulin delivery through continuous subcutaneous insulin
infusion pumps.1,2,4 Automated insulin delivery systems
have been associated with improved glycemic outcomes
and reduced patient burden.4,5 In September 2016, the
FDA approved the first hybrid closed loop (HCL) device,
the MiniMed 670G (Medtronic, Dublin, Ireland).6,7 In
December 2019, a second HCL system by Tandem Dia-
betes Care (San Diego, CA) dubbed Control-IQ received
FDA approval.8 Both devices use glucose measurements
from a CGM to alter basal insulin delivery from an insulin
pump through software running on an embedded micro-
controller in the pump. Unfortunately, these are not fully
automatic systems and users are still required to enter the
quantity of carbohydrates they plan to eat into the pump
for mealtime insulin boluses.7 A full closed loop system
would enable entirely autonomous insulin delivery with-
out user input, but these systemshave yet to be successfully
implemented commercially primarily due to a lack of effi-
cient control in the post prandial period.9 Improvements
in meal-detection algorithms may present an avenue for
improvement in completely autonomous control.9
Open-source algorithms for closed loop or automated

insulin delivery (AID) predate commercial availability of
such systems and have been developed by members of
the diabetes community.10–13 The three most common sys-
tems include OpenAPS, Loop, and AndroidAPS.14,15 Each
has an emphasis on safety but are unregulated, as they
are user-designed and user-driven. As compared to com-
mercial systems they offer significant transparency and
personalization.10 Without conventional regulatory over-
sight, design changes can occur more rapidly. The systems

use models to predict future glucose and then alter insulin
delivery to optimize glucose to a target range specified by
the user (Figure 1).
While these open-source AID systems, like commercial

systems, originally functioned most optimally with meal
input from the user, efforts have been made to provide full
closed loop control. The most commonly used algorithm
with advanced features for full closed loop control is the
OpenAPS algorithm known as “oref1” that is also used
in AndroidAPS. The current heuristic algorithm of oref1
generates multiple future blood glucose predictions based
on (i) action of approximated insulin remaining in the
body; (ii) the scenario in which all carbohydrate intake
ceases, and the system stops insulin delivery; (iii) action
of approximated carbohydrates remaining in the body;
and (iv) unannounced meal absorption. The predictions
are then combined to estimate the lowest predicted
glucose, and insulin delivery is adjusted to ensure that
the local minima remains within a prespecified target.
The user, similar to standard insulin pump therapy,
inputs their personal basal rate, insulin-to-carbohydrate
ratio (ICR), insulin sensitivity factor (ISF), and curve of
insulin pharmacodynamics. OpenAPS and AndroidAPS
also enable automated insulin coverage of meals without
carbohydrate announcement via the “unannouncedmeal”
feature, whereby meals are anticipated based on available
data suggesting an otherwise unanticipated glycemic
excursion. These unannounced meals may then be acted
upon by a supermicrobolus (SMB) wherein tiny boluses
are delivered to more rapidly affect rising glucose levels.
Other features, not specific to unannouncedmeals, such as
“auto-sensitivity” respond to glucose fluctuations beyond
the scope of predictions. These features used in combi-
nation enable some OpenAPS and AndroidAPS users to
utilize the open-source system in a full closed loop mode.
The other open-source AID system, Loop, uses a dif-

ferent algorithm that employs coincidence point control
(model predictive control),16 and generates a single future
prediction based on insulin delivery history, carbohydrates
entered, and other entered settings, including the basal
rate, ICR, ISF, and curve of insulin pharmacodynamics.
When used in humans, users enter not only carbohydrate
counts but also an estimate of the absorption time of
that particular meal or food. Loop uses two forms of
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F IGURE 1 Algorithm schematic. Open-source automated insulin delivery systems AndroidAPS and Loop have been designed to
incorporate mealtime carbohydrate entry into blood glucose (BG) predictions, and thus control of insulin delivery. However, a system that
does not require meal announcements needs to be able to respond to unannounced mealtime glucose excursions to maintain glucose within a
target range. (A) Loop algorithm constructs a single glucose prediction based on the sum of four components: (i) carbohydrates on board, (ii)
insulin on board, (iii) glucose momentum, and (iv) retrospective correction. Retrospective correction adjusts the predicted glucose level by
measuring the discrepancy between the predicted glucose and the actual glucose levels. (B) AndroidAPS/OpenAPS algorithm constructs four
separate prediction curves: (i) insulin predicted glucose, (ii) carbohydrate predicted glucose, (iii) unannounced meal (UAM) predicted
glucose, and (iv) zero-temporary basal insulin predicted glucose. The AndroidAPS/OpenAPS algorithm then aims for the minimum predicted
glucose value to still fall within the target range
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short-term adaptation called “glucose momentum” and
“retrospective correction” to enact temporary basal rates
to push the projected glucose toward a specified target
range. Glucose momentum uses the 5-min rates of change
from the prior 20 min to influence future predictions, with
most weight given to the most recent rate of change. In
retrospective correction, glucose differing from the pre-
dicted value causes that difference to be added to the next
prediction. An extension of this feature called “integral
retrospective correction” takes not only the difference but
also the accumulated differences into account for more
rapid adaptation.
These open-source algorithms have become increas-

ingly popular amongst patients but are difficult to study
in humans, outside of observational studies, due to
regulatory restrictions.10,17,18 Work is just beginning on
randomized controlled trials analyzing these systems
in hybrid closed loop mode (where users are typically
announcing meals); there are currently no head-to-head
studies comparing automated insulin delivery system per-
formance without meal announcement.13 In developing
these algorithms further for use without meal announce-
ments, it is important to understand the performance
of each in clinical practice. In this study, we evaluate
the algorithms used in OpenAPS/AndroidAPS and Loop,
without meal announcements or user interactions, in a pig
model of insulin-deficient diabetes. The comparison of the
algorithms in pigs, which have similar physiological glu-
cose ranges but demonstrate faster insulin kinetics than
humans, allows for algorithm performance to be evaluated
as if using next-generation ultra-fast insulins that are in
the pipeline but not yet available for use in humans.19–21
This is useful because it is hypothesized that ultrafast
insulin kineticsmay enable fully closed loop delivery with-
out the requirement of additional therapeutics (glucagon
or amylin) or sensors (accelerometers). Exploiting the
faster insulin kinetics in pigs allows us to understand the
important features of full closed loop algorithm design
in the context of future ultra-fast insulins. The quality of
closed loop control was evaluated primarily by time-in-
range (TIR) of 70–180 mg/dl and number of hypoglycemic
events. We hypothesized that the unannounced meal and
SMB features of the oref1 algorithm used in OpenAPS and
AndroidAPS would result in superior closed loop control
for unannounced meals as compared to Loop.

2 MATERIALS ANDMETHODS

2.1 Study design

This was a prospective animal study that examined the dif-
ferences in performance between two open-source auto-

mated insulin delivery system algorithms. The algorithms
most commonly used are: oref1, used in OpenAPS and
AndroidAPS, and the Loop algorithm. Six female York-
shire pigs with streptozotocin-induced diabetes were used
in this study. Pigs were set up with the closed loop algo-
rithmprior to themonitoring period.Algorithms remained
constant for at least 1 day and the AndroidAPS algo-
rithm preceded the Loop algorithm in all cases. Since each
algorithm approaches communication with the RileyLink
(and thus the pump) differently, studying a single algo-
rithm at a time reduced the risk of unforeseen challenges
where communication styles conflicted. AndroidAPS uses
a polite strategy to coordinate and “take turns” querying
the RileyLink when multiple rigs are running. In con-
trast, Loop constantly queries the RileyLink and when
running Loop we were limited to three Loop rigs at a
time. As described in the Supporting Methods, the cur-
rent study was performed following a month-long phar-
macokinetic study in the same cohort of pigs with dia-
betes. There was a washout period of 12 h or more between
the pharmacokinetic studies and the start of closed loop
studies. All pharmacokinetic studies were performed with
rapid-acting insulins that would be cleared well within
this period. The pigs were studied in the context of closed
loop control over a 20-day period, however due to techni-
cal difficulties with devices, monitoring periods were not
completed on all days. Table S1 shows the dates of each
individual monitoring period by meal and by pig. Reasons
that monitoring periods were not completed included: (i)
loss of signal from CGM, (ii) detachment of CGM, or (iii)
detachment of infusion set during the monitoring period.
It should be noted that fromAugust 11 to 15, 2019 pigs were
switched to AndroidAPS with a novel insulin formulation,
and thus data from that period were not included in this
study and from August 21 to 24, 2019 pigs 2, 3, 5, and 6
participated in pharmacokinetic experiments for a novel
insulin formulation and were not participating in closed
loop studies. Total monitoring periods across all pigs were
69 for AndroidAPS and 47 for Loop. However, these totals
include repeated observations in the same subject (pig) and
conditions (meal and algorithm) (Table S2). Total inde-
pendent observations were 24 for AndroidAPS and 23 for
Loop (six pigs, four meals, two algorithms). During exper-
iments where the Loop algorithm was used only two to
three pigs could be tested at one time to prevent radio
interference between competing rigs, which contributed
to the lower monitoring period count for the Loop algo-
rithm and greater spacing between recordings. This study
was a secondary study and thus sample size was not based
on power analysis specific to this study. However, Mead’s
resource equation (based on curves of diminishing returns)
suggests that total error degrees of freedom (DF) should
fall between 10 and 20 in order to detect worthwhile effect



LAL et al. 5 of 13

sizes.22 The denominator DF (i.e., error DF) is reported in
Section 3 alongside all F ratios (Fnumerator DF, denominator DF).
TIR of 70–180 mg/dl was defined as the proportion of 5-

min intervals that were in the euglycemic range out of the
total number of intervals during each mealtime monitor-
ing period. Time-in-hypoglycemia was defined as the pro-
portion of 5-min intervals where glucose was <70 mg/dl.

2.2 Streptozotocin-induced diabetes in
swine

Female Yorkshire pigs (Pork Power) were used for all
experiments. Animal studies were performed in accor-
dance with the guidelines for the care and use of lab-
oratory animals and all protocols were approved by the
Stanford Institutional Animal Care and Use Committee.
Insulin-deficient diabetes was induced in pigs (25–30 kg)
using streptozotocin (STZ) (MedChemExpress), as previ-
ously reported.19,20 STZwas infused intravenously at a dose
of 125 mg/kg and animals were monitored for 24 h. Food
and administration of 5% dextrose solution was given as
needed to prevent hypoglycemia. Diabetes was defined as
fasting blood glucose greater than 300 mg/dl. For closed
loop studies, pigs were set up with a continuous glu-
cose monitor (Dexcom G6) applied to the pig’s lower side
toward their rear flank (Figure S5). The insulin pump was
placed in the pocket of a pig jacket (Lomir Biomedical)
and cannulawas inserted subcutaneously in a similar loca-
tion to the CGM either on the opposite side of the pig, or
more than 3 inches from the CGM if on the same side. The
Rileylink, a communication bridge device used to commu-
nicate between the insulin pump and the mobile phone,
was secured within range of both the phone and insulin
pump in the pig’s housing.

2.3 Determination of insulin needs
parameters in pigs with diabetes

As with type 1 diabetes in humans, STZ-induced dia-
betesmanifestswith different insulin requirements in each
pig. In response, we individualized dosing regimens and
customized closed loop setups for each animal. To cus-
tomize closed loop setups for each pig, individual dos-
ing parameters were derived without closed loop control
(Table 1). First, basal insulin requirements were deter-
mined by titration to maintain nocturnal glucose within
30 mg/dl of starting glucose values. Basal rates ranged
between 0.10 and 0.30 units/h. During these titrations,
pigs wore CGMs and insulin pumps and the basal rate
was iteratively adjusted through trial and error until glu-
cose levels remained stable overnight. Upon establishing

TABLE 1 Individual insulin dosing parameters

Pig
Basal rate
(units/h)

ISF
(mg/dl/unit insulin)

ICR
(g carb/unit insulin)

1 0.15 110 49
2 0.20 167 90
3 0.10 154 68
4 0.30 158 59
5 0.20 160 69
6 0.25 132 58

this basal rate, ISF was established by measuring glucose
response to 1 unit of insulin delivered intravenously simul-
taneously with subcutaneous basal insulin infusion in the
unfed state. ISF was equal to the change in glucose after
insulin administration (glucose typically took ∼90 min to
stabilize). ISF ranged from 110 to 167 mg/dl/unit. ICR was
determined by titrating mealtime insulin bolus to main-
tain pre- and post-prandial glucose following a 400 g meal
of pig chow (132 g carbohydrates) with titrated basal in
the absence of hyperglycemia correction. Without carbo-
hydrate announcements neither system utilizes ICR, and
thus ICR was not a critical parameter in the context of this
study.

2.4 Insulin pharmacokinetics and
pharmacodynamics in pigs with diabetes

Insulin pharmacokinetics are more rapid in pigs than in
humans.19,20,29 Thus, it was necessary to construct models
for insulin action to be used in both open-source systems,
which model insulin action as an exponential curve. In
AndroidAPS, the parameters defining the curve are time-
to-peak action (TPA) and total duration of insulin action
(DIA).23 Loop uses time-to-onset, TPA, and DIA.15 The pig
pharmacokinetic curves for use in open-source algorithms
were determined from data obtained during a pilot study
in pigs (n = 6). This experimental pharmacokinetic curve
is consistent with pharmacokinetics observed in the pigs
used in this study.20 Pigs were kept on fast 4–6 h and
then injected subcutaneously with a 4 U dose of Humalog
(100 U/ml, Eli Lilly). Before injection, baseline blood was
sampled from an intravenous catheter line and measured
using a handheld glucose monitor (Bayer Contour Next).
After injection, blood was sampled from the intravenous
catheter line every 5 min for the first 60 min, then every
30 min up to 4 h. Blood was collected in K2EDTA plasma
tubes (Greiner-BioOne) for analysis with ELISA. Plasma
lispro concentrations were quantified using an Insulin
Lispro ELISA kit (Mercodia). Pharmacodynamics were
approximated by blood glucose measurements in a stable
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F IGURE 2 Pharmacokinetics and pharmacodynamics used for insulin model. Fasted pigs with diabetes were injected subcutaneously
with 4 U of Humalog. (A) Blood glucose measurements in fasted pigs. (B) Insulin (lispro) pharmacokinetics and corresponding model fit.
(C) Modeled insulin pharmacodynamics from within Loop.

fasting state after 2–3 h (Figure 2A). Insulin pharmacoki-
netics demonstrated peak serum concentrations within
20–25 min and near complete exposure duration of 2 h
(Figure 2B). Our pig insulin model was developed with
initial glucose lowering effect at 15 min (used only for
Loop), peak action of 25 min, and DIA of 3 h to prevent
insulin stacking. Figure 2C shows the insulin model
setting within Loop. Initial pilot studies with a DIA of 2 h
showed increased hypoglycemia from mis-approximation
of insulin clearance.

2.5 AndroidAPS

AndroidAPS is an android-based open-source automated
insulin delivery system that utilizes the same algorithm
from OpenAPS. The OpenAPS algorithm, known as oref0
or as oref1 when implemented with advanced features,
determines insulin dosing based on a number of sce-
narios that it forecasts with different types of predic-
tions, which are then blended to determine appropriate
insulin adjustments.23 Two of these scenarios, “eventual”
(eventualBG) and “IOB-based” (IOBpredBGs), attempt to
predict BGs in situations without (much) carbohydrate
absorption. Another scenario, “zero-temp” (ZTpredBGs),
attempts to predict the “worst likely case” if observed car-
bohydrate absorption suddenly ceases and if a zero-temp
were applied until BG begins rising at/above target. The
final two scenarios, “COB” (COBpredBGs) and “unan-
nouncedmeal” (UAM) (UAMpredBGs), attempt to predict
how long an observed BG rise will continue, to dose appro-
priately for announced and unannounced meals, and for
anything else that causes a sustained rise in BG.
When no carbohydrate announcements are available, or

when announced carbohydrates are mostly absorbed and
COB-based predictions are less reliable, it is also possible
to predict that observed deviations would gradually return

to zero over some period (a “deviation” term is calculated
to represent howmuch BG is currently rising or falling rel-
ative to what it should be doing based solely on insulin
activity).
Once deviations have peaked and are decreasing at a rea-

sonable rate, the UAM calculations assume that the devia-
tions will continue to decrease at the same rate until they
reach zero. If they are decreasing, but too slowly, it assumes
theywill decrease linearly to zero over 3 h. If deviations are
still increasing, it assumes they will peak immediately and
start decreasing at one-third of the rate they increased from
their recent minimum.
After oref0 generates all relevant predictions, it blends

and combines them to produce estimates of the lowest
predicted BGs likely to be observed over the timeframe
relevant for dosing, calculates how much insulin is
required (insulinReq) to bring the minimum predicted
BG down toward the target, and then uses the insulinReq
to calculate an appropriate microbolus or temp basal. If
no carbohydrate announcement is present, minPredBG
is generally set to the maximum of minIOBPredBG, the
lowest IOBpredBG (starting 90 min in the future), and
minZTUAMPredBG, which is the average of the lowest
UAMpredBG (starting ∼60 min in the future, minUAM-
PredBG) and the lowest ZTpredBG (starting immediately,
minZTGuardBG).
The insulin recommended to be dosed (insulinReq) is

then set to the difference between the minPredBG and tar-
get BG, divided by ISF. During each loop (calculation),
half of the insulinReq is delivered as a microbolus, when
not limited by other safety settings, and on each subse-
quent loop the minPredBG is recalculated to calculate a
new insulinReq and microbolus.24 This implementation
of oref1 in AndroidAPS with unannounced meals and
SMB has been tested in other studies, primarily in real-
world usage with meal announcements, and also studied
in silico.25–27
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AndroidAPS code (https://github.com/MilosKozak/
AndroidAPS) and documentation (https://androidaps.
readthedocs.io/en/latest/EN/) are available online.

2.6 Loop

Loop is another open-source automated insulin delivery
system that uses a different algorithm that employs model
predictive control to forecast future glucose and then
delivers insulin and keeps glucose within a user set target.
A suspend threshold stops all insulin delivery when the
actual or predicted glucose is below a prespecified value.
In normal use, the effect of delivered insulin and entered
carbohydrates is modeled with additional short-term
adaptation performed by “glucose momentum” and
“retrospective correction.” With unannounced meals, the
system is unable to model the effect of carbohydrates.
Instead, these excursions are perceived as deviations
from prior predictions and thus must be acted upon by
the short-term adaptations. The integral retrospective
correction feature is hypothesized to improve glucose
control under unannounced meal conditions compared
to standard retrospective correction.28 Further informa-
tion about the standard retrospective correction factor
originally used by Loop can be found in “Loop: Integral
retrospective correction.”28 Loop code for themain branch
(https://github.com/LoopKit/Loop), integral retrospective
correction branch (https://github.com/dm61/Loop/tree/
integral-retrospective-correction), and documentation
(https://loopkit.github.io/loopdocs/) are available online.

2.7 Closed loop challenge

Pigs with streptozotocin-induced insulin-deficient dia-
betes were started on the open-source closed loop systems
AndroidAPS (Build: MDT_0.11-66-g264bbdee2-2019.08.02-
23:07, running the oref1 algorithm with SMB and UAM
enabled) and Loop (Build: 1.10.0dev-jojo, using the Loop
algorithm with integral retrospective correction enabled).
Despite identical algorithm settings for each pig, only two
of the six pigs (Pigs 4 and 5) received SMB and basal rate
modulation from AndoidAPS. Single SMB amounts are
limited by several factors. The largest a single SMB bolus
can be is the smallest value of (1) 30 min of the current
regular basal rate (as adjusted by autotune/autosens); (2)
half of the insulin required amount; or (3) the remaining
portion of your maxIOB setting in preferences. The
relatively low insulin requirements may have limited the
delivery of microboluses in the remaining pigs. For the
remaining pigs, only temporary basal rates were utilized
to control glucose. Pigs were fed three meals per day at

approximately 7:30 a.m., 1:30 p.m., and 7:00 p.m. each day.
Breakfast consisted of applesauce with added sugar (66 g
carbohydrates) to mimic a fast-absorbing simple carbo-
hydrate meal. Lunch and dinner were standard pig chow
(400 g Teklad Miniswine Diet 8753; 132 g carbohydrates).
The post-prandial monitoring period for each meal was

considered to be the 6 h following breakfast, or the 5 h fol-
lowing lunch or dinner. Overnightmonitoringwas defined
as the 6 h between 1:00 a.m. and 7:00 a.m.Monitoring peri-
ods where CGMs stopped working for longer than 1 h were
excluded. PeriodswhereCGMsor infusion sets fell off were
also excluded. No software malfunctions for AndroidAPS
or Loop occurred that required data exclusion. TIR was
calculated for each post-prandial or overnight monitoring
period.
During the closed loop challenge, corrective car-

bohydrates were given when two methods of glucose
measurement (e.g., ear prick, iv blood draw, or CGM)
were <55 mg/dl or if the CGM alone reported glucose
<40 mg/dl. Here, we use administration of corrective
carbohydrates as a metric for severe hypoglycemic event.
Glucose level of 55 mg/dl was used as the threshold for
corrective carbohydrate administration as it is the default
“Urgent Low Soon” alarm setting for the Dexcom G6 in
the Dexcom app. However, observationally the DexcomG6
often slightly underestimated glucose levels (a reasonable
safety feature) compared to glucose measurements taken
using a handheld monitor from an ear prick or venous
catheter line blood sample. To avoid administering correc-
tive carbohydrates unnecessarily, we set the requirements
that two measurements had to indicate that blood glucose
was <55 mg/dl. Typically, the “Urgent Low Soon” alarm
would go off and then the pig’s blood glucose would be
taken by a secondary method to confirm whether cor-
rective carbohydrates were required (two measurements
<55 mg/dl). Alternatively, we set a threshold of CGM read-
ing alone of <40 mg/dl could also warrant administration
of corrective carbohydrates. This limit was set because
some pigs had a strong aversion to ear pricks by the end
of the study and always taking two measurements was
not possible. The lower limit was set based on observation
that typically a CGM value alone just <55 mg/dl did not
correspond to severe hypoglycemia by other methods.

2.8 Statistics

For statistical analysis time-in-hypoglycemia required
additional transformation using the natural logarithm to
meet assumptions of homoscedasticity. No transform was
performed on the TIR data.
All analyses were performed in JMP Pro 14 or SAS

Version 9.4. As each pig acted as its own control, we

https://github.com/MilosKozak/AndroidAPS
https://github.com/MilosKozak/AndroidAPS
https://androidaps.readthedocs.io/en/latest/EN/
https://androidaps.readthedocs.io/en/latest/EN/
https://github.com/LoopKit/Loop
https://github.com/dm61/Loop/tree/integral-retrospective-correction
https://github.com/dm61/Loop/tree/integral-retrospective-correction
https://loopkit.github.io/loopdocs/
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used repeated measures. To test if glucose TIR or time-
in-hypoglycemia differed between algorithms, we used
a restricted maximum likelihood (REML) repeated mea-
sures mixed model. Pig was included as a random effect
subject. Algorithm and meal were included as within-
subject fixed effects. The interaction between algorithm
and meal (algorithm*meal) tested whether the algorithms
differed in performance for different meals. Post hoc tests
of significant interactions were performed as Bonferroni
corrected planned contrasts, where the effect of algorithm
was tested for each meal, and significance was set at
p < .0125.
Severe hypoglycemic events were identified as when

two methods of glucose measurement (e.g., ear prick, iv
blood draw, or CGM) were <55 mg/dl or if the CGM alone
reported glucose <40 mg/dl. For each session, the pig was
scored as experiencing a severe hypoglycemic event or not.
As each pig acted as its own control, we used repeated
measures, and as each trial was a simple yes or no, we
used logistic regression. To accommodate repeated mea-
sures appropriately, we implemented the logistic regres-
sion as a GEE within a generalized linear model with a
logistic link function and a binomial error distribution in
PROCGENMOD(SASVersion 9.4). The effect of algorithm
was tested with likelihood ratios. Least-squares means and
standard error (SE) (i.e., mean probability corrected for
pig) were calculated and plotted or reported in the text.
To test if insulin requirements in the 5 h following the

start of monitoring periods differed between algorithms,
we used REML repeated measures mixed model. Pig was
included as a random effect subject. Algorithm and meals
were included as within-subject fixed effects. The interac-
tion between algorithm and meal (algorithm*meal) tested
whether the algorithms differed in performance for differ-
ent meals.

3 RESULTS

3.1 Closed loop challenge in swine with
diabetes

To test the algorithms, pigs were set up on either
AndroidAPS or Loop closed loop systems (Figure 1, Fig-
ures S1 and S2). During the study, the pigs were mon-
itored over four “meal” monitoring periods: breakfast,
lunch, dinner, and overnight (no foodwas given during the
overnight “meal”) (Figure 3A,B). Sample full day monitor-
ing glucose profiles for three pigs comparing AndroidAPS
and Loop are shown in Figure 3C. Average glucose levels
for each individual pig are shown broken down by meal
in Figure 4A–D (see Figures S3–S6 for individual curves).
Overall mean ± SE TIR for AndroidAPS was 58% ± 5%,

while TIR for Loop was 35% ± 5%. On average, TIR dif-
fered between algorithms (F1,5.43 = 15.16; p-value = .0098)
and, between meals (F3,17.77 = 3.786; p = .0291), but in
fact the effect of algorithm differed between meal peri-
ods (F3,15.97 = 22.09; p < .0001) such that the algorithms
only differed significantly during the overnightmonitoring
period (Figure 4, Table S3). Within the overnight monitor-
ing period, pigs had an average TIR of 90% ± 7% when on
theAndroidAPS algorithm compared to 22%± 8%when on
Loop (post hoc planned contrast:F1,16.09 = 67.34; p< .0001).
Observation of individual glucose curves indicates that
TIR differences between algorithms during the overnight
period appear to be a result of prolonged post-prandial
hyperglycemia after dinner in pigs using Loop. Algorithm
did not have an effect on the amount of insulin delivered
(Figure S7).
The characterization of hypoglycemia during closed

loop challenges were split into two metrics: (i) time spent
in hypoglycemia (defined as blood glucose <70 mg/dl);
and (ii) severe hypoglycemic events requiring corrective
carbohydrates (Figures 4 and 5). On average, time-
in-hypoglycemia did not differ between algorithms
(F1,4.515 = 0.6394; p = .4639), but differed between meals
(F3,16.1 = 5.7022; p = .0074). However, the effect of algo-
rithm differed with meal (F3,14.21 = 9.9186; p = .0009) such
that the algorithms only differed significantly during the
lunch meal. Pigs running AndroidAPS spent an average of
1.4% (SE=+0.4/−0.8)% in hypoglycemia during the lunch
monitoring period compared to 10% (SE = +3/−6)% when
using Loop (post hoc planned contrast: F1,19.09 = 19.78;
p = .0003).
Corrective carbohydrates were given when two meth-

ods of glucose measurement (e.g., ear prick, iv blood draw,
or CGM) were <55 mg/dl or if the CGM alone reported
glucose <40 mg/dl. Corrective carbohydrates were only
necessary during the rapid carbohydrate breakfast moni-
toring periods (Figure 4B), andno corrective carbohydrates
were needed during other monitoring periods. The choice
of algorithm did not significantly affect the probability of
a severe hypoglycemic event requiring carbohydrates (LR
Chi sq = 1.20; DF = 1; p = .2743).

4 DISCUSSION

In this study, we compare the open-source algorithms
used in common AID systems (oref1 in OpenAPS and
AndroidAPS, and Loop) in a full closed loop challenge in
pigs with type 1-like diabetes. Breakfast was the only mon-
itoring period where incidents of corrective carbohydrates
occurred for either algorithm. These observations sug-
gest that both algorithms over-deliver insulin in response
to fast-absorbing carbohydrates but can adjust delivery
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F IGURE 3 Glucose traces during closed loop challenges. Pigs with streptozotocin-induced insulin-deficient diabetes underwent
head-to-head comparison of do-it-yourself open-source closed loop systems AndroidAPS and Loop. (A) Pigs wear Dexcom G6 continuous
glucose monitors (CGM) and compatible Medtronic pumps that connect to either an android phone (AndroidAPS) or iPhone (Loop) via a
RileyLink. Systems are setup for full closed loop (no meal announcements). (B) Glucose levels are monitored overnight and after three meal
challenges per day. (C) Sample full-day traces for both AndroidAPS and Loop for pigs 1, 4, and 6. Time-in-range (euglycemia) was defined as
the time where CGMmeasured glucose was 70–180 mg/dl

to prevent hypoglycemia in response to mixed meals.
From observing individual glucose profiles, it appears
that Loop may have had difficulty adapting to differ-
ences in meal composition. Loop performs similarly to
AndroidAPS at breakfast but causes fewer incidents of
hypoglycemia requiring corrective carbohydrates. In the
lunch post-prandial period, the Loop algorithm led to
increased time spent in hypoglycemia compared to the
AndroidAPS algorithm. During the dinner post-prandial
period, the Loop algorithm exhibited prolonged hyper-
glycemia, which extended into the overnight monitoring
period and translated to the observed decrease in overnight
TIR. After the unannounced rapid rise in glucose at break-
fast that continued at lunch, the system predicted a greater
subsequent rise in glucose that increased aggressiveness of
the insulin response, causing the observed hypoglycemia.

As there is greater time duration between lunch and din-
ner, the retrospective correction abates andmay even push
the prediction downward, resulting in a more conserva-
tive insulin delivery and commensurate prolonged hyper-
glycemia. In contrast, AndroidAPS demonstrated consis-
tent post-prandial performance after lunch and dinner but
showed a trend for increased hypoglycemia after breakfast.
These results suggest that Loop may have difficulty

adapting sufficiently to unannounced meals, which are
absorbed in a dynamic and variable fashion. We postulate
that this observed behavior arises due to the selected time
constants employed for this short-term adaptation, which
were selected for human use and are constant for both ris-
ing and falling glucose. The unannounced meal feature in
AndroidAPS dynamically evaluates unanticipated upward
deflections in glucose, and following peak deviation and
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F IGURE 4 Time spent in range and hypoglycemia during closed loop challenges. Average traces (mean ± SE) for each pig on
AndroidAPS or Loop for (A) breakfast, (B) lunch, (C) dinner, (D) overnight. Time-in-range (TIR) was defined as time where CGMmeasured
glucose between 70 and 180 mg/dl and hypoglycemia was defined <70 mg/dl. (E) TIR is reported as a percentage of the total time during the
monitoring period: breakfast (6 h), lunch (5 h), dinner (5 h), or overnight (6 h) for AndroidAPS and Loop algorithms (F),
time-in-hypoglycemia is reported as a percentage of the total time during the monitoring period (6 h for overnight and breakfast; 5 h for lunch
and dinner. Data are shown as log-transformed least squares mean ± SE with back-transformed axis labels. (A–D) Glucose curves are shifted
on the x-axis to align the start times of the monitoring periods. (E and F) Each pig was monitored for each meal at least once for each
algorithm. Data are reported as least squares mean ± SE. Statistical significance was determined by restricted maximum likelihood (REML)
repeated measures mixed model. Bonferroni post hoc tests were performed on individual meal test slices and significance (*) and alpha was
adjusted to account for multiple comparisons (alpha = .0125)
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F IGURE 5 Hypoglycemic events requiring corrective carbohydrates. When corrective carbohydrates were required, pigs received half a
jumbo marshmallow (10 g sugar). Corrective carbohydrates were only necessary during breakfast monitoring periods for both algorithms. (A)
Severe hypoglycemic events that required corrective carbohydrates were defined as (i) when two methods of glucose measurement were
<55 mg/dl (ear prick, iv blood draw, or CGM), or (ii) when the CGM alone reported glucose <40 mg/dl. (B) Probability of severe hypoglycemic
events during the breakfast monitoring period for each algorithm. Each breakfast monitoring period was evaluated as having one of two
outcomes: (i) no intervention was necessary, or (ii) corrective carbohydrates were given. Data shown are back-transformed from
log-transformed least squares mean ± SE. Each pig received each algorithm at least once (n = 6 pigs). Statistical significance was determined
using logistic regression as a GEE within a generalized linear model. Each pig acted as its own control and was included as repeated measures

sufficient fall, the algorithm predicts how long it will take
for the unannounced meal to finish absorbing. Another
difference between the systems is the choice of delivery
method with boluses (Pigs 4 and 5 only) used occasion-
ally inAndroidAPS versus basalmodulation alone in Loop.
Compared to boluses, basal modulation can still deliver
relatively large quantity of insulin over a short period of
time (up to 35 units/h). There may be a slight advantage
to bolus delivery when connectivity is intermittent. Tem-
porary basal rates are usually enacted for 30 min, whereas
boluses are delivered completely once issued, so a discon-
nect may result in prolonged delivery of an altered basal
rate. Thus, the AndroidAPS algorithm with SMBs and
unannounced meal features may be better suited for the
variability inherent to mixed meals than Loop.
In conclusion, we hope this study helps to inform the

design and development of more effective algorithms for
fully autonomous insulin delivery. Study in pigs presents
an opportunity to explore algorithms in conjunction with
faster insulin kinetics that are in the pipeline but not yet
available for use in humans. A limitation of the study
includes the frequent device failures (arising from sensor
signal loss or devices falling off of the pigs) which meant
that continuous closed loop monitoring over the course of
an entire day was not always possible. Another limitation
is that during AndroidAPS use, microboluses were only
implemented for two of the pigs despite the application
of identical settings. Further, the time constraints of this
study, and differences in communications between rig set-
ups, meant that the algorithms were not randomized and
the total number of observation periods with AndroidAPS
exceeded the number of observation periods with Loop.

We have identified that current commercial algorithms
are not yet optimized for fully autonomous control, and
that it is important for future designs to be able to adapt to
unannounced meals with variable absorption. Full closed
loop has been attempted with newer ultra-rapid insulin
analogs alone30 but has been unable to achieve TIR target
of >70%.31 Other attempts have required additional data
(e.g., accelerometer for recognizing sleep32) or pharmaceu-
ticals (e.g., amylin,33 glucagon34) to compensate for the
limits of insulin-only systems.We hope to identify whether
open-source algorithms could aid in efforts to achieve
full closed loop without requiring additional pharmaceu-
ticals/sensors. The open-source algorithm of oref1, used
in both OpenAPS and AndroidAPS, with unannounced
meal feature and SMBs performs admirably under full
closed loop conditions and should be considered by all
when designing future algorithms. Moreover, with the
advent of new biosensor technologies, closed loop control
may become possible for other pharmacotherapy appli-
cations (e.g., immunosuppressants,35 pain management
drugs,36 antiepileptic drugs,37 and anticoagulants).35 There
is potential that our efforts to explore algorithm perfor-
mance may potentially inform the development of sys-
tems for future applications of closed loop control of other
molecules.
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