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Ischemic heart disease is the most common type of heart

disease, responsible for roughly 10 million deaths worldwide

annually. While standard clinical interventions have resulted in

improved patient outcomes, access to small diameter vessels

required for cardiovascular interventions, and long-term patient

mortality rates associated with eventual heart failure, remain

critical challenges. In this current opinion piece we discuss

novel methodologies for the advancement of vascular grafts,

cardiac patches, and injectable drug delivery depot

technologies as they relate to treatment of ischemic heart

disease, including bilayered conduits, acellular bioactive

extracellular matrix (ECM) scaffolds, and protease-responsive

hydrogel delivery platforms. We address the motivation for

innovation and current limitations in the field of engineered

biomaterials for myocardial ischemia therapeutics and

interventions.
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Introduction
Cardiovascular disease is the leading cause of death

worldwide, claiming the lives of 17.5 million people

each year globally and accounting for annual direct costs

of $213 billion in the United States [1]. The most

common type of cardiovascular disease is ischemic heart

disease (IHD), a condition that claims the lives of

roughly 10 million people globally each year and

currently affects over 18.2 million Americans [2].
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Furthermore, the prevalence of ischemic heart disease

is expected to rise by 46% by 2030 and subsequently

double the associated annual healthcare expenditures

[2]. While current clinical interventions, such as percu-

taneous coronary intervention (PCI) and coronary artery

bypass grafting (CABG) improve patient outcomes,

many patients ultimately succumb to heart failure due

to inability to reverse or prevent downstream left ven-

tricular remodeling [3]. Moreover, up to 37% of patients

requiring CABG procedures are limited in eligibility due

to prior surgeries and patient’s medical conditions, which

limit the ability to harvest autologous small diameter

vessels [4]. Additionally, long-term outcomes associated

with both autologous and synthetic graft options are

limited due to thrombosis [5]. Finally, standard clinical

interventions such as PCI and CABG mainly restore

macrovascular reperfusion following myocardial infarc-

tion (MI) and fail to address microvascular perfusion

deficits contributing to eventual heart failure [3]. Thus,

there is a critical need to improve upon vascular grafts

required for CABG procedures and address persistent

microvascular perfusion deficits following MI and sub-

sequent cardiovascular intervention. In this current

opinion piece, we will discuss several biomaterial

approaches seeking to address critical challenges relating

to engineered vascular grafts, cardiac scaffolds, and

sustained local delivery of therapeutics using injectable

hydrogel depots (Figure 1).

Vascular grafts
Vascular grafts are conduits that can support blood flow,

withstand the pressures exerted by blood flow, and,

ideally, have the capability to grow, remodel, and self-

repair in vivo [6,7]. The first engineered vascular graft was

proposed by Bell and colleagues in the 1980’s [8]; how-

ever, it took nearly 20 years for engineered vascular grafts

to be implanted in humans [9]. The first engineered

vascular graft implanted in humans was generated using

autologous cells isolated from explanted peripheral vein

and seeded in a polymer scaffold composed of polyca-

prolactone-polylactic acid copolymer reinforced with

woven polyglycolic acid [9]. Following this invention, a

human trial was initiated to evaluate similar grafts

using the same biodegradable scaffold seeded with

mononuclear cells harvested from autologous bone mar-

row in patients with single ventricle physiology [10].

Although late-term results demonstrated feasibility of

this technology in the application of extracardiac total

cavopulmonary circulation, graft stenosis was noted to be

the primary mode of failure [11]. Additionally, other
www.sciencedirect.com
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Schematic overview of specific topics covered in this current opinion

article.
similar polymer-based grafts were unable to demonstrate

adequate mechanical strength to allow for implantation in

the arterial system [12,13]. This limitation was attributed

to the synthetic or chemically modified components of

the scaffold interfering with natural extracellular matrix

protein assembly.

L’Heureux et al. generated engineered vascular conduits

using fibroblasts, smooth muscle cells (SMC), and endo-

thelial cells without the use of any synthetic materials

[14]. The authors used sheet-based tissue engineering

and demonstrated the ability of the engineered vessels

to withstand supraphysiological burst strength con-

structed exclusively from human and human-derived

constituents [15]. Promising pre-clinical results led to

a clinical trial that demonstrated satisfactory early term

results in patients on dialysis [15–17]. Another approach,

which laid the foundation for other clinical trials and

‘off-the-shelf’ vascular grafts, involved the generation of

decellularized grafts for both engineered and autologous

conduits [18,19]. Specifically, rapidly degradable poly-

glycolic acid tubular scaffolds have been used for cell

seeding and graft maturation in a bioreactor [19]. At the

end of the culture period, the resultant structure is

decellularized, leaving only the secreted collagenous

matrix produced by seeded cells. Although these vascu-

lar grafts were not immunogenic, these studies exhibited

early graft failure due to thrombosis and required pro-

longed production times of up to 10 weeks in culture

[16,19].
www.sciencedirect.com 
To address these limitations, innovative approaches

have more recently been investigated. Von Bornstädt

and coworkers described a methodology utilizing cell

sheets to generate a bilayered conduit. The conduit

was strengthened by an FDA-approved biodegradable

tissue glue and perfused with endothelial cells

(Figure 2g). The graft was able to reach maturity with

supraphysiological burst strength in just two weeks and

demonstrated excellent early term patency in a

rodent hindlimb ischemia model (Figure 2a–f) [20��].
Electrospinning techniques have also been utilized

to develop nanofibrous vascular scaffolds with promis-

ing biomechanical properties and structural integrity

[21,22,23�,24]. This approach exhibited exciting results

six months after transplantation in a sheep carotid

arterial interposition model [25]. Furthermore, with

the recent advancements in 3D live cell bioprinting,

progress has been made in generating vascular conduits

by harnessing the versatility of 3D printing technology.

Marga et al. used a scaffold-free approach to generate a

tubular structure by using contiguously arranged

cellular aggregates as printer cartridges [26]. While

promising results and innovative technologies have

been demonstrated, suggesting the need for further

exploration, shorter production times for mature, autol-

ogous conduits remains a critical challenge for high risk

patients. Specifically, patients with severe, unstable

coronary artery diseases may require surgical treatment

within CABG within several days of symptom onset,

necessitating the need for rapidly available, robust

conduits. Significant efforts are still required to readily

scale-up engineered vascular grafts to satisfy intra-

cardiac needs and enhance the production process for

future commercialization.

Cardiac scaffolds
Cardiac scaffolds (or cardiac patches) are in vitro
engineered constructs that can provide mechanical sup-

port to promote endogenous repair and regeneration of

the ischemic tissue, or otherwise act as a vehicle to deliver

therapeutic cargo to the ischemic tissue [27]. Many of

these types of scaffolds have the potential to maintain the

cellular microenvironment, support cellular differentia-

tion and organization, and prevent anoikis [28]. Cardiac

scaffolds can be built upon natural or synthetic biomater-

ials, or created scaffold-free via cellular self-assembly, to

produce functional myocardial tissue [29,30]. Researchers

have shown that collagen and chitosan based cardiac

patches alone, without cellular or molecular cargo, pre-

vent negative myocardial remodeling and induce angio-

genesis throughout the infarcted region of the heart

[31,32]. Expanding upon cardiac patch delivery alone,

therapeutic cargo such as proteins, stem cells, cytokines,

and growth factors can be seeded onto the cardiac patch

and further enhance the therapeutic benefit of this

approach [33].
Current Opinion in Biotechnology 2020, 66:246–254
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Figure 2
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Structural maturation of the engineered vascular graft in vitro and in vivo. (a–f) Engineered vascular conduit (EVC) immediately before in vitro

perfusion, immediately before implantation in vivo, and after 1 day, 4 weeks, and 8 weeks after implantation in vivo compared with a native

femoral artery of a nude rat. Human smooth muscle actin antibody, green fluorescent protein; von Willebrand factor antibody, Texas Red; 4’,

6-diamidino-2-phenylindole, blue; confocal microscopy, �20. (g) EVCs were anastomosed to the femoral artery as an interposition graft in end-to-

end fashion (10-0 nylon suture, 5 stitches). Reproduced with edits and permissions from Wolters Kluwer Health, Inc.
In particular, cell-loaded cardiac scaffolds composed of a

variety of different cell types have been widely investi-

gated due to the ability of these scaffolds to address

limitations in scaffold thickness and the potential to be

more readily vascularized by the host circulatory system

[34]. Common cell sources for these applications include

skeletal myoblasts, bone marrow-derived cells, mesen-

chymal stem cells, embryonic stem cells, induced plurip-

otent stem cells, induced pluripotent stem cell derived

cardiomyocytes, and cardiac stem cells [35]. In 2008,

Chachques et al. reported the results of the first clinical

trial investigating a cardiac patch (MAGNUM) where a

bone marrow stem cell (BMSC)-seeded collagen scaffold

was implanted intramyocardially during CABG surgery in

patients with post-ischemic injuries. Patients who

received the cell-seeded cardiac scaffold exhibited an

increase in scar thickness and improvement in left-ven-

tricular end-diastolic volume compared to the cell-only

group demonstrating promise for the therapeutic benefit

of a cell-loaded cardiac patch [36]. Ten years later, Lar-

ghero et al. published the results of a clinical study

investigating a fibrin patch laden with embryonic stem

cell-derived cardiac progenitor cells. These cardiac

patches were administered to six patients with severe

ischemic left ventricular dysfunction during CABG sur-

gery. After a median 18-month follow-up, investigators

determined that the patches demonstrated promising

safety outcomes, but warranted further efficacy studies

with a more adequately powered study [37].
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Preclinical and clinical studies investigating cell-laden

cardiac scaffolds have shown promise and warrant further

investigation due to the demonstrated therapeutic ben-

efits of paracrine signaling and direct interaction with

injured cardiomyocytes [38�]. However, it is important to

note the inconsistent results associated with cell-laden

therapeutics for cardiac applications [39]. While clinical

trials investigating cell-based therapeutics have demon-

strated the potential safety of a cellular approach, func-

tional improvements have been modest and associated

with uncertain clinical significance [40–44]. Several

limitations may be contributing to the observed incon-

sistencies in efficacy, including fragile cellular cargo,

limited long-term stability, extensive production times

and costs, and the presence of undifferentiated cells

contributing to uncontrolled cell growth or tumorgenicity

following transplantation [45]. These limitations can

potentially be addressed with further exploration into

acellular approaches [45]. Previous work investigating

acellular cardiac scaffolds have demonstrated significant

cardiogenesis, vasculogenesis, and promising functional

recovery in post-ischemic myocardial tissue in both small

and large preclinical models of myocardial ischemia [46].

Furthermore, these acellular scaffold studies encouraged

a first-in-man pilot study, investigating feasibility, infarct

size, cardiac function, and treatment related-adverse

events resulting from the implantation of an acellular

bioactive ECM scaffold implanted at the time of CABG

surgery (ClinicalTrials.gov ID: NCT02887768).
www.sciencedirect.com
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More recently, exciting work published by Huang et al.
demonstrated an off-the-shelf artificial cardiac patch com-

posed of a decellularized porcine myocardial extracellular

matrix and synthetic cardiac stromal cells. This fully

artificial cardiac patch (artCP) retained potency following

long-term cryopreservation of 28 days, improved cardiac

function, reduced infarct size, and increased angiogenesis

when applied to rodent and porcine myocardium follow-

ing myocardial infarction (Figure 3) [47��]. Moreover, the

artCP demonstrated a negligible immune response

offering an additional advantage over other cardiac patch

approaches due to the use of synthetic cardiac stromal

cells. Previous reports have shown that the use of

allogenic cells risk immunogenicity and the use of autol-

ogous cells can be expensive and time-consuming for an
Figure 3
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independent batch per patient [45,47��]. However, while

the artCP utilized a synthetic cell source and resulted in

no observed immune response, the use of a decellularized

porcine myocardial extracellular matrix scaffold in the

artCP is still of concern and requires further investigation

for human applications due to previous reports demon-

strating inflicted immune responses as a result of decel-

lularized scaffolds [48]. Overall, further investigation of

the artCP is needed to conduct adequately powered large

animal studies over a longer study period in conjunction

with more robust biocompatibility testing, but the prom-

ising study results and reported long-term stability

emphasize the motivation to engineer solutions with

minimal translational hurdles and enhanced potential

for clinical translation.
(c)
Infarct/total area (%)

In
fa

rc
t/

to
ta

l a
re

a 
(%

)
2n

d 
sl

ic
e

3r
d 

sl
ic

e

4t
h 

sl
ic

e

Slice 4 Slice 5

Histology and 
morphometry

Current Opinion in Biotechnology

atic showing the study design. The representative pictures show the

right). (b) Heart sectioning for gross assessment of infarct size. The top

ation (red dashed circle) and five sections (1 cm in thickness; dashed

P transplanted area (red dashed circle). The images on the right show

(top) and the artCP-treated group (bottom). The white area in the TTC-

ted with green arrows. (c) Infarction area percentage measured in heart

Comparisons among groups were performed using one-way ANOVA

re indicated by lines, and the statistical significance is indicated by

scending artery; TTC = 2,3,5-Triphenyltetrazolium chloride. Reproduced

ent of Science.
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Figure 4
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Injectable hydrogel approaches and in vivo efficacy. (a) Demonstration of hydrogel formation with encapsulated cytokines. HA-NP hydrogel is

composed of a hydrophobically modified hyaluronic acid (HA) which is crosslinked by hydrophobic polyethyleneglycol block polylactic acid

(PEGPLA) nanoparticles. The ESA is encapsulated into the nanoparticle phase and HGFdf is encapsulated into the aqueous phase of the hydrogel.

(b–e). Left ventricle infarct area. Hearts were explanted and opened longitudinally. The infarct was photographed for quantification and

representative images of hearts from each group are presented. (b) PBS treated (c) HG only treated and (d) HG + HGFdf + ESA treated animals

were evaluated. (e) HG + HGFdf + ESA demonstrated a significantly reduced infarct size compared to PBS animals and smaller average infarcts

compared to HG only animals. ANOVA with a Bonferroni correction for multiple comparisons, *p < 0.05. (f) Schematic demonstrating siRNA-

cholesterol association with hydrogel via cholesterol/CD interactions and illustrating hydrogel erosion in response to MMPs. (g) Representative

Masson’s trichrome sections (3 representative sections from ligation to apex from left to right in 2 representative animals per group, 1 animal per

row). (h) Quantification of infarct thickness from Masson’s trichrome sections across three representative axial/transverse sections per animal

Current Opinion in Biotechnology 2020, 66:246–254 www.sciencedirect.com
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Injectable hydrogels
Injectable hydrogels are water-swollen networks of cross-

linked polymers composed of natural and/or synthetic

polymers and are mostly classified based on chemical or

physical crosslinking mechanisms [49,50�]. While these

injectable biomaterials do not allow for specific organiza-

tional control afforded by the engineered cardiac patches

previously discussed, a significant benefit is the potential

for minimally invasive, catheter-based delivery without

the need of an invasive, surgical procedure in order to

administer the treatment [27]. Similar to the cardiac

scaffold approach discussed previously, researchers have

demonstrated therapeutic efficacy following myocardial

injection of hydrogel alone, without cellular or molecular

cargo [51]. Composite, or hybrid, hydrogels have demon-

strated promise by combining optimal natural and syn-

thetic material components for improved biochemical and

biomechanical material properties [52]. For example,

ECM-fibrin, alginate-chitosan, and ECM-polyethylene

glycol hydrogels have previously demonstrated improved

cardiac repair following MI [51,53,54]. Additionally, com-

posite hydrogels composed of fibrin and alginate resulted

in attenuated LV wall thickness and decreased infarct

expansion in a porcine chronic MI model [55]. To date,

there have been few clinical trials resulting from the vast

preclinical work investigating hydrogel-based interven-

tions for myocardial ischemia [5]. In 2015, an alginate-

based hydrogel delivered via direct myocardial injection

was evaluated in patients with advanced heart failure and

exhibited improved exercise capacity, though further

clinical studies with larger patient cohorts followed over

longer time periods are needed to further validate these

results [56]. Recently, Traverse et al. published the results

of a Phase 1 clinical trial (AUGMENT-HF) investigating

VentriGel, an extracellular matrix hydrogel derived from

decellularized porcine myocardium. The study evaluated

the safety and feasibility of transendocardial injections of

VentriGel to patients with early and late post-MI patients

with LV dysfunction. The results of this study support the

safety and feasibility of this therapeutic and suggest

improvements in exercise capacity and reductions in

New York Heart Association functional class across the

cohort of patients, warranting further investigation in a

larger, randomized, controlled clinical trial [57].

Expanding upon the methodology of hydrogel delivery

alone, other studies have investigated the advantageous,

tunable cargo delivery characteristics of injectable hydro-

gels. Several groups have evaluated the therapeutic effi-

cacy of loading therapeutic cargo such as proteins, stem

cells, DNA, RNA, small molecules, cytokines, and/or

growth factors into the hydrogel, which can then act as
(Figure 4 Legend Continued) (mean � SD, *p < 0.05, **p < 0.01, ****p < 0.

context of healthy controls (orange, mean � SD, n = 7). I. Quantification of h

representative axial/transverse sections per animal (mean � SD, *p < 0.05, P

edits and permissions from Elsevier.
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a depot for sustained local release [52,58,59]. Steele et al.
investigated the sustained delivery of two protein-

engineered cytokines via a catheter deliverable hydrogel

in small and large animal MI models. In this study, the

dual-stage release of dimeric fragment of hepatocyte

growth factor (HGFdf) and engineered stromal cell-

derived factor 1a (ESA) activate separate, but synergistic

reparative pathways yielding improved cardiac function in

the small animal MI model and observed reduction in scar

size in the large animal, preclinical MI model (Figure 4a–e)

[60]. The erosion profile of the hydrogel was investigated in
vitro and resulted in 47% of the hydrogel eroding after

14 days. However, while the small animal MI model

yielded enhanced functional outcomes, the large animal

model resulted in minimal changes in functional parame-

ters that lead to insignificant findings. The improvement in

myocardial scar size observed in the preclinical model still

suggests the potential for therapeutic benefit, but further

investigation into the appropriate dosing required for large

animal myocardium is needed. It is also possible that a

chronic MI model may be required to better investigate the

most optimal dosing for clinical efficacy instead of the acute

MI model utilized in this study. A chronic MI model would

more accurately reflect the clinical scenario and increase

the potential of successful translation with themost optimal

therapeutic dose.

Lastly, research groups are further innovating and inves-

tigating advanced hydrogel systems or ‘smart’ hydrogels

in which internal or external events trigger the release of

therapeutic cargo allowing for additional spatiotemporal

control over release kinetics [61]. Recently, Burdick et al.
engineered a protease-responsive hydrogel delivery plat-

form capable of an ‘on-demand’ release of siRNA in

response to the myocardial proteolytic activity contribut-

ing LV dilation and mechanical compromise following

MI. In this study, a hyaluronic acid (HA) hydrogel with

encapsulated siRNA against matrix metalloprotease 2

(siMMP2) is injected directly into the infarct region

and erodes in response to the local protease activity

releasing siMMP2 (Figure 4f). Delivery of the prote-

ase-responsive hydrogel in a rodent model of MI

improved myocardial thickness and enhanced cardiac

function including increased ejection fraction, stroke

volume, and cardiac output. Hydrogel volumes were

retained in the infarct wall due to decreased hydrogel

erosion as a result of the siMMP2, responsible for atten-

uating hydrogel erosion by 46% when compared to control

siRNA hydrogels. These results suggest promising, syn-

ergistic effects of preserved hydrogel volumes for wall

bulking in conjunction with a positive feedback loop that

responds to the native, infarcted myocardial environment
001, PBS: n = 6, gel/siCTRL: n = 7, gel/siMMP2: n = 6) and presented in

ydrogel area from Masson’s trichrome sections across three

BS: n = 6, gel/siCTRL: n = 7, gel/siMMP2: n = 6). Reproduced with

Current Opinion in Biotechnology 2020, 66:246–254
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prompting the release of therapeutic cargo (Figure 4g–i)

[62��]. Additional studies in large animal, preclinical

models as well as additional therapeutic combinations

should be performed to further address the potential for

clinical efficacy and other upregulated factors contribut-

ing to complex, adverse LV remodeling events.

Conclusion
This current opinion/review began with an overview of

the clinical challenges associated with ischemic heart

disease. In accordance with current literature, we

classified and analyzed current biomaterial approaches

that contribute to the next generation of translational

myocardial ischemia interventions. These were divided

into three categories: vascular grafts, cardiac patches,

and injectable depot therapeutics. The goals of these

approaches are to (1) improve upon existing cardiovascu-

lar interventions following myocardial infarction, (2)

optimize therapeutic efficacy by utilizing synergistic

approaches, (3) provide minimally invasive, targeted

delivery platforms, and/or (4) minimize translational

hurdles associated with many traditional approaches.

While these recent studies have yielded exciting results

and warrant further experimental investigation, many

clinical challenges remain to be addressed including

long-term efficacy, systemic toxicity, pharmacokinetics,

pharmacodynamics, long-term side effects, and concur-

rent treatment options. It is also important to note

the importance of animal models in minimizing the

translational hurdle to human application. Before clinical

translation, these engineered biomaterials should be

investigated in relevant large animal preclinical models

that most closely resemble the human anatomy and clinical

scenario. Ovine or porcine chronic MI models and cardiac

bypass models provide an optimal relevancy to the human

disease and clinical application that should be considered

following small animal acute and chronic MI models. The

future of engineering biomaterials for heart disease is

continually shifting toward developing the ideal combina-

tion of therapeutic innovation and translational potential

for facile clinical adoption and true bench-to-beside

research. Furthermore, the collaboration among bioengi-

neering, material science, cardiovascular medicine, and

cardiothoracic surgery is crucial in solving the complex

sequelae related to heart disease. As the research commu-

nity continues to innovateandaddressboth therapeutic and

translational limitations, the future of biomaterials as it

relates to heart disease will remain promising with the

potential to improve the quality of life and life expectancy

of patients with ischemic heart disease.
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